Operasibintang maksudnya adalah suatu operasi tertentu yang didefinisikan pada suatu himpunan G. Untuk lebih jelasnya, perhatikan contoh-contoh berikut ini! Misal Z himpunan bilangan bulat dan + adalah operasi penjumlahan yang biasa, kita tahu bahwa sebarang a bilangan bulat jika dijumlahkan dengan 0 yakni a+0 atau 0+a pasti menghasilkan a (a+

0% found this document useful 0 votes1 views4 pagesOriginal Titlekaidah-matematika-dalam-operasi-himpunan[1]Copyright© © All Rights ReservedShare this documentDid you find this document useful?0% found this document useful 0 votes1 views4 pagesKaidah Matematika Dalam Operasi HimpunanOriginal Titlekaidah-matematika-dalam-operasi-himpunan[1]Jump to Page You are on page 1of 4 Gnbn ? Viswlyl Gpb. ? 04>>644;;Trlji. ? Tkr`ngcng Vynrinm Vkbkstkr 6BC. ? Bntkbnticn isgis N. TkghkrtingBntkbnticn isgis njnanm bkbpkanonri tkgtngh pkgkrnpng iabu bntkbnticn jnanb pkgykaksning `kr`nhi pkrbnsnanmng `isgis. Ckbnbpung ngnaisis jng `krpicir alhis jnanb bntkbnticn jnpnt bkb`ngtu bkbkfnmcng pkrslnang `isgis.  Tkgtighgyn Tkghktnmung Eughsi Bntkbnticn ugtuc KclglbiCkonjing-ckonjing kclglbi snaigh `krmu`ughng jng snaigh bkbpkghnrumi skpkrti ?  Mu`ughng pkgjnpntng jkghng pkghkaunrng ugtuc clgsubsi  Mu`ughng mnrhn jkghng pkrbigtnng `nrngh  Mu`ughng inyn Trlblsi jkghng Mnsia Tkgounang  Mu`ughng Igvkstnsi jkghng Tkgjnpntng gnsilgnaJkghng jkbicing citn jnpnt bkancucng ?  Tkru`nmng ‖ pkru`nmng yngh tkronji  Tkrnbnang ntnu Tkrcirnng  Bkghucur Tkghnrum  k`krnpn Flgtlm Tkghhugnng BntkbnticnTkghhugnng Jnanb Vtntistic Kclglbi ? - Bkbnmnbi rubus-rubus stntistic - Bkbnmnbi tklri pkghuoing mipltksis - Bkbnmnbi clgskp tklri mnrnpng - Bkbnmnbi ngnaisn rkhrksiTkghhugnng Aigknr Trlhrnbbigh ? - Bncsibub bigibub - Bntrics jng jktkrbigng > MIBT[GNG 0.>. Tkghkrting jng Tkgynoing MibpugngMIBT[GNG njnanm Vuntu jnetnr jnri skcubpuang l`ykc yngh bkbpugyni firi-firi tkrtkgtu. L`ykc yngh njn jnanb mibpugng jnpnt `krupn ? ianghng, Gnbnlrngh, Murue, Gnbn cltn, js`. L`ykc yngh njn jnanb mibpugng jisk`utKakbkg ntnu [gsur ntnu `insngyn jituais jnanb murue `ksnr, skpkrti? N, , F, J, ], Y….,Vkjnghcng nghhltn mibpugng jituais jnanb murue ckfia, skpkrti ? n, `, f, j, x,y….Fnrn bkguais mibpugng ? >.Jkghng fnrn bkgjnetnr nghhltn mibpugnggynFlgtlm ? N 2 { n, `, f, j } nrtigyn mibpugng N bkbpugyni nghhltnynitu n, `, f, jng fnrn bkgkgtucng suntu nturng pkrgyntnng Flgtlm ? Vuntu mibpugng yngh `krnghhltncng x skjkbicing rupnskmighhn x njnanm `ianghng hngoia >, 6, ;, 8, ………jst, jituais jkghng ? 2 { x x `ianghng hngoia }T 2 { x x bnmnsiswn pkgkribn `knsiswn }Vuntu l`ykc yngh bkrupncng nghhltn mibpugng jituais jkghngx Ç . Vuntu l`ykc yngh `ucng bkrupncng nghhltn mibpugng jituaisjkghng x Ì Mibpugng N jicntncng snbn jkghng mibpugng , oicn ckjungynbkbpugyni nghhltn yngh snbn, bncn ncng jituais N 2 Jnpnt tkronji `nmwn suntu mibpugng tijnc bkbpugyni nghhltnsnbn skcnai. Mibpugng tkrsk`ut jignbncng mibpugng clslgh ntnumibpugng gla, ji`kri anb`ngh 2 Å ntnu 2 { }. Mibpugng clslghbkrupncng mibpugng `nhing jnri sktinp mibpugng. Flgtlm ? C 2 { 6 }mibpugng igi mngyn bkbiaici sntu nghhltn ynitu nghcn 6. Mibpugng `nhing yngh jibiaici lakm mibpugng C njnanm skbun mibpugng yngh `krnghhltncng nghcn 6 jng skbun mibpugng clslgh. 0 Bisnacng mibpugng ^ 2 { n, ` }, bncn mibpugng `nhinggynnjnanm ? N 2 { n }, 2 { ` }, F 2 { n, ` }, jng J 2 { } onji oubanmmibpugng `nhing yngh jibiaici lakm mibpugng ^ 2 { n, ` } njn mibpugng. [gtuc bkghmitugh oubanm mibpugng `nhing yngh jibiaici lakmsuntu mibpugng yngh bkbiaici g nghhltn jnpnt jirubuscng ? 0 g Lpkrnsi MibpugngAnb`ngh-anb`ngh jnanb Zklri Mibpugng jng nrtigyn GlAnb`nghNrtiFlgtlm Tkghhugnng>. \ N [ ÝNghhltnkakbkgtmibpugng `nhingsu`skthn`ughngugilgirisngigtkrskftilgskaisim `ucng Nclbpakbkgmibpugng ugivkrsnamibpugng clslgh x Ç N ? l`ykc x njnanm nghhltn jnri mibpugng N N Á ? N njnanm mibpugng `nhing jnri N Í ? hn`ughng ngtnrn N jng N È ? irisng ngtnrn N jng N - ? skaisim ngtnrn mibp N jicurnghi mibp N 2 `ianghng plsitie N 2 `ianghng gkhntie Vkaurum n`onj jnri n snbpni zVkaurum pkgjujuc ji juginVuntu fnrn skjkrmngn ugtuc bkghhnb`nrcng mu`ughng ngtnr mibpugng njnanm bkghhugncng Jinhrnb Ukgg ‖ Kuakr Cnijnm Bntkbnticn jnanb Lpkrnsi Mibpugng 6 Reward Your CuriosityEverything you want to Anywhere. Any Commitment. Cancel anytime.

Sifatketertutupan pada operasi himpunan mempunyai makna bahwa hasil dari pengoperasian dua atau lebih himpunan menghasilkan satu penyelesaian berupa himpunan. B. Sifat Komutatif Sifat komutatif pada operasi himpunan hanya berlaku pada operasi irisan dan gabungan, yaitu A ∩ B = B ∩ A dan A ∪ B = B ∪ A. Jenis Jenis Operasi Pada Himpunan Matematika A. Jenis-jenis Operasi Pada Himpunan Matematika 1. Irisan ∩ Irisan himpunan A dan B adalah himpunan yang anggotanya menjadi anggota A dan menjadi anggota B. Misalkan seperti contoh ini A ∩ B = { x Ι x ∈ A dan x ∈ B} Contoh gambar Diagram venn untuk operasi himpunan irisan seperti dibawah ini Serta contoh penulisan untuk operasi himpunan irisan serperti dibawah ini A = {1,2} B = {1,2,3, maka irisannya adalah A ∩ B = {1,2}. Jika kita melihat pada gambar diagram venn nya, maka {1,2} terletak pada arsiran berwarna merah. 2. Gabungan ∪ Gabungan himpunan A dan B adalah himpunan yang anggotanya merupakan anggota A atau anggota B. Misalkan seperti contoh ini A ∪ B = { x Ι x ∈ A atau x ∈ B}. Contoh gambar Diagram venn untuk operasi himpunan gabungan seperti dibawah ini Serta contoh penulisan untuk operasi himpunan gabungan serperti dibawah ini A = {1,2} B = {1,2,3, maka gabungannya adalah A ∪ B = {1,2,3}. Jika kita melihat pada gambar diagram venn nya, maka {1,2,3} terletak pada seluruh lingkaran yang terarsir. 3. Komplemen c Komplemen dari A adalah himpunan yang anggotanya bukan anggota dari himpunan A itu sendiri. Komplemen disimbolkan dengan Ac. Misalkan seperti contoh ini Ac= { x Ι x ∉ A }. Contoh gambar Diagram venn untuk operasi himpunan komplemen seperti dibawah ini Serta contoh penulisan untuk operasi himpunan komplemen serperti dibawah ini S = {1,2,3,4,5,6,7,8,9,10} A = {1,2} Ac = {3,4,5,6,7,8,9,10} Jika kita melihat pada gambar diagram venn nya, maka {3,4,5,6,7,8,9,10} terletak pada luar lingkaran. 4. Selisih − Selisih himpunan A dan B adalah himpunan yang anggotanya semua anggota dari A, namun bukan anggota dari B. Misalkan seperti contoh ini A − B = { x Ι x ∈ A, x ∉ B}. Contoh gambar Diagram venn untuk operasi himpunan selisih seperti dibawah ini Serta contoh penulisan untuk operasi himpunan selisih serperti dibawah ini A = {1,2,3} B = {1,2,5, maka gabungannya adalah A − B = {3}, begitu juga sebaliknya jika B − A = {5}. Jika kita melihat pada gambar diagram venn nya, maka itu adalah gambar dari A − B = {3} terletak lingkaran A yang terarsir. 5. Jumlah + Jumlah himpunan A dan B adalah himpunan yang anggotanya A dan B, kecuali irisan dari A dan B. Misalkan seperti contoh ini A + B = { x Ι x ∈ A dan A ∈ B, x ∉ A ∩ B}. Contoh gambar Diagram venn untuk operasi himpunan jumlah seperti dibawah ini Serta contoh penulisan untuk operasi himpunan jumlah serperti dibawah ini A = {1,2,3} B = {1,2,5, maka gabungannya adalah A + B = {3,5}. Jika kita melihat pada gambar diagram venn nya, maka itu adalah gambar dari A + B = {3, 5} terletak lingkaran A dan lingkaran B yang terarsir. Sekian pembahasan kita kali ini tentang Operasi apda Himpunan yang dimulai dari Operasi Irisan, Gabungan, Komplemen, Selisih dan juga Jumlah. Sebelum kita akhiri, memberikan contoh soal dibawah ini untuk memperdalam pemahaman kita tentang materi kali ini. Mari kita perhatikan jangan lupa dikerjakan yaa teman-teman. Contoh Soal Jenis Jenis Operasi Pada Himpunan Matematika S = { x Ι 1 < x < 15, x ∈ N, P = {faktor dari 10}, Q = {tiga bilangan prima pertama}, tentukan a P ∪ Q b P ∩ Q c P − Q d P + Q e Pc f Qc Selamat mengerjakan!!! Operasidi Himpunan Matematika. Dalam teori himpunan, operasi himpunan dilakukan ketika dua atau lebih himpunan digabungkan untuk membentuk himpunan tunggal di bawah beberapa kondisi tertentu. Operasi dasar pada Himpunan adalah: Persatuan Himpunan; Persimpangan Himpunan; Sebuah pelengkap dari satu Himpunan; Produk himpunan Cartesian. Tetapkan perbedaan Photo by Keira Burton on Hai, Sobat Pintar! Artikel ini akan membahas tentang materi himpunan matematika, yang akan dibahas meliputi pengertian dari himpunan, jenis-jenisnya, contoh soal dan pembahasannya. Nah, sebelum kita bahas materi ini, coba deh Sobat Pintar sebutkan contoh-contoh hewan yang berkembang biak dengan cara melahirkan. Misalkan saja ada sapi, kambing, kelinci, kucing, dan yang lainnya. Kumpulan hewan-hewan tersebut bisa kita sebut sebagai himpunan hewan yang berkembang biak dengan cara melahirkan. Bagaimana kalau himpunan nama bulan dalam setahun yang terdiri dari 25 hari? Tidak ada kan Sobat. Lalu bagaimana cara menuliskan himpunan yang tidak memiliki anggota? Semua pertanyaan-pertanyaan yang tadi disebutkan akan Sobat ketahui jawabannya pada pembahasan himpunan berikut. Yuk, simak ulasannya di bawah ini! Himpunan adalah kumpulan dari objek tertentu yang memiliki definisi yang jelas dan dianggap sebagai satu kesatuan. Coba deh Sobat perhatikan contoh kumpulan himpunan berikut ini -Himpunan perempuan berparas cantik -Himpunan bilangan cacah -Himpunan orang yang rajin -Himpunan bilangan bulat positif Dari contoh kumpulan himpunan di atas, bisakah Sobat Pintar membedakan mana yang merupakan himpunan dan yang bukan himpunan? Yup benar! Contoh yang merupakan himpunan adalah contoh 2 dan 4, sedangkan contoh 1 dan 3 bukan himpunan. Apa Sobat tahu alasannya? Buat Sobat Pintar yang masih bingung, begini nih alasannya Sobat. Pada contoh 2 himpunan bilangan cacah, kita akan memiliki pendapat yang sama tentang bilangan berapa sajakah yang termasuk bilangan cacah, misalnya 0,1,2, dan 3. Semua setuju kan kalau bilangan tersebut termasuk bilangan cacah? Pada contoh 1 perempuan berparas cantik dan contoh 3 orang yang rajin, keduanya tidak memiliki definisi yang jelas. Kata cantik dan rajin memiliki definisi yang berbeda untuk setiap orang, misalnya Sobat Pintar menganggap peremuan A cantik tapi Sobat Pintar lainnya belum tentu menganggap perempuan A cantik juga, bukan? Oleh karena itu, perempuan cantik dan orang yang rajin bukanlah suatu himpunan. Nah, berdasarkan contoh kumpulan himpunan di atas, kakak harap Sobat Pintar udah tahu perbedaan himpunan dan bukan himpunan. Sekarang kita lanjut dengan pembahasan bagaimana cara menyatakan suatu himpunan dan macam-macam himpunan. Cara Menyatakan Himpunan Photo by Monstera on Setelah Sobat Pintar memahami pengertian dari himpunan, sekarang kita belajar memahami cara menyatakan himpunan. Secara umum, himpunan disimbolkan dengan huruf kapital dan jika anggota himpunan tersebut berupa huruf maka anggotanya dituliskan dengan huruf kecil. Berikut ini beberapa cara menyatakan penulisan himpunan, Sobat. -Kata-kata yaitu menyebutkan semua syarat dari anggota himpunan tersebut di dalam kurung kurawal. Contoh D merupakan himpunan bilangan genap antara 4 dan 20 Dapat dituliskan menjadi D = {bilangan genap antara 4 dan 20} -Notasi pembentuk himpunan yaitu menyebutkan semua sifat dari anggota himpunan dengan anggotanya yang dinyatakan dalam suatu variabel dan dituliskan di dalam kurung kurawal. Contoh D merupakan himpunan bilangan genap antara 4 dan 20 Dapat dituliskan menjadi D = {x 4 < x < 20, x Є bilangan genap} -Mendaftar anggota-anggotanya yaitu menuliskan semua anggota dari himpunan tersebut di dalam kurung kurawal dengan dibatasi tanda koma diantara anggotanya. Jika anggota dari himpunan tersebut terlalu banyak, Sobat Pintar bisa menuliskan dengan “…”. Contoh D merupakan himpunan bilangan genap antara 4 dan 20 Dapat dituliskan menjadi D = {6, 8, 10, 12, 14, 16, 18} Mungkin Sobat Pintar ada yang masih bingung, apakah semua himpunan dapat dinyatakan dengan ketiga cara tersebut? Jawabannya adalah tidak Sobat, karena tidak semua himpunan bisa ditulis dengan menyebutkan anggotanya. Contohnya nih ada himpunan bilangan real riil yang tidak bisa disajikan dengan menyebutkan semua anggotanya. Nah, untuk mengukur pemahaman Sobat Pintar, coba deh nih simak contoh soal berikut ini. Tulislah anggota dari himpunan berikut! C={bilangan ganjil kurang dari 15} D={bilangan cacah kurang dari 8} Pembahasan 1. C={1,3,5,7,9,11,13} Bilangan ganjil adalah bilangan asli yang bukan kelipatan dari 2 dan tidak habis dibagi 2. Jadi, anggota himpunan C adalah 1,3,5,7,9,11, dan 13. 2. D={0,1,2,3,4,5,6,7,8} Bilangan cacah merupakan bilangan bulat yang tidak negatif yang dimulai dari angka 0. Jadi, anggota himpunan D adalah 0,1,2,3,4,5,6,7, dan 8. Operasi Himpunan Berikutnya kita akan membahas tentang operasi himpunan nih, Sobat Pintar. Simak baik-baik ya! Irisan Irisan dari dua himpunan X dan Y merupakan himpunan yang anggotanya ada di himpunan X dan juga ada di himpunan Y. Irisan antara dua buah himpunan dinotasikan oleh tanda “∪” Contoh X = {1,2,3,4} Y= {2,3,5,6} Maka X∪Y={1,2,3,4,5,6} Selisih X selisih Y merupakan himpunan dari anggota X yang tidak memuat anggota Y. Selisih antara dua buah himpunan ini dinotasikan dengan tanda “-“. Contoh X = {1,2,3,4} Y= {2,3,5,6} Maka A – B = {1,4} Komplemen Komplemen suatu himpunan adalah himpunan lain yang memuat semua anggota semesta yang tidak dimiliki oleh himpunan tersebut. Komplemen A dinotasikan dengan AC. Contoh A = {a, d, f, h} S = {a, b, c, d, e, f, g, h, i} Maka AC = {b, c, e, g, i} Gimana nih Sobat? Materi himpunan cukup mudah dipahami bukan? Sekarang Sobat Pintar jadi tahu tentang materi himpunan dari pengertian himpunan, bagaimana cara menyatakannya, dan operasi pada himpunan. Segini dulu nih artikel tentang materi himpunan Sobat. Semoga artikel ini bermanfaat bagi Sobat Pintar yang membaca ya! Selain materi himpunan, kalian juga bisa belajar tentang materi-materi lainnya melalui aplikasi Aku Pintar di fitur Belajar Pintar mata pelajaran Matematika. Sampai bertemu di pembahasan berikutnya, Sobat Pintar! Sekolah maupun Kuliah tidak mengajarkan apa yang harus kita pikirkan dalam hidup ini. Mereka mengajarkan kita cara berpikir logis, analitis dan praktis." - Azis White - 1. Irisan Intersection Notasi A⋂B = { x x ∈ A dan x ∈ B } Contoh Jika A = {2, 4, 6, 8, 10} dan B = {4, 10, 14, 18}, maka A⋂B = {4, 10}Jika A = { 3, 5, 9 } dan B = { -2, 6 }, maka A⋂B = ∅. Artinya A // B 2. Gabungan Union Notasi A⋃B = { x x ∈ A atau x ∈ B } Contoh Jika A = { 2, 5, 8 } dan B = { 7, 5, 22 }, maka A ⋃ B = { 2, 5, 7, 8, 22 }A⋃∅ = A 3. Komplemen Complement Notasi Ā = { x x ∈ U, x ∉ A } Contoh Misalkan U = { 1, 2, 3, …, 9 } jika A = {1, 3, 7, 9}, maka A = {2, 4, 6, 8}jika A = { x x/2 ∈ P, x < 9 }, maka A = { 1, 3, 5, 7, 9 } 4. Selisih Difference Notasi A – B = { x x ∈ A dan x ∉ B } = A ⋂ Bc Contoh Jika A = { 1, 2, 3, …, 10 } dan B = { 2, 4, 6, 8, 10 }, maka A – B = { 1, 3, 5, 7, 9 } dan B – A = ∅{1, 3, 5} – {1, 2, 3} = {5}, tetapi {1, 2, 3} – {1, 3, 5} = {2} 5. Beda Setangkup Symmetric Difference Notasi A ⨁ B = A⋃B – A⋂B = A – B⋃B – A Contoh Jika A = { 2, 4, 6 } dan B = { 2, 3, 5 }, maka A ⨁ B = { 3, 4, 5, 6 } TEOREMA 2. Beda setangkup memenuhi sifat-sifat berikut A ⊕ B = B ⊕ A hukum komutatifA ⊕ B ⊕ C = A ⊕ B ⊕ C hukum asosiatif 6. Perkalian Kartesian Cartesian Product Notasi A × B = {a, b a ∈ A dan b ∈ B } Contoh Misalkan C = { 1, 2, 3 }, dan D = { a, b }, maka C × D = { 1, a, 1, b, 2, a, 2, b, 3, a, 3, b }Misalkan A = B = himpunan semua bilangan riil, maka A × B = himpunan semua titik di bidang datar Catatan! Jika A dan B merupakan himpunan berhingga, maka A × B = A Ba, b ≠ b, a.A × B ≠ B × A dengan syarat A atau B tidak A = ∅ atau B = ∅, maka A × B = B × A = ∅ Materi Lengkap Silakan baca juga beberapa artikel menarik kami tentang Matematika Diskrit – Himpunan, daftar lengkapnya adalah sebagai berikut. Tonton juga video pilihan dari kami berikut ini
Notasi: Ā adalah himpunan yang beranggotakan obyek-obyek yang tidak dimiliki oleh A. Atau Ā adalah selisih antara himpunan universal U dengan A. Ā = { x; x Є U tetapi x Є A } = U - A Kaidah Matematika dalam Pengoperasian Himpunan 1). Kaidah Idempoten A U A = A A Π A = A 2). Kaidah Asosiatif
0% found this document useful 0 votes6K views6 pagesCopyright© Attribution Non-Commercial BY-NCAvailable FormatsDOC, PDF, TXT or read online from ScribdShare this documentDid you find this document useful?0% found this document useful 0 votes6K views6 pagesKaidah Matematika Dalam Operasi HimpunanJump to Page You are on page 1of 6 You're Reading a Free Preview Pages 4 to 5 are not shown in this preview. Reward Your CuriosityEverything you want to Anywhere. Any Commitment. Cancel anytime.
CaraMenyatakan Himpunan Operasi Himpunan 1. Irisan Himpunan 2. Gabungan Himpunan 3. Selisih 4. Komplemen Himpunan 5. Beda setangkup (SYMMETRIC DIFFERENCE) Contoh Soal dari Operasi Himpunan Diagram Venn Macam Macam Himpunan Himpunan Penyelesaian Sistem Persamaan Linear Dua Variabel (SPLDV) Metode Grafik Metode Subtitusi Metode Eliminasi
. 363 365 221 289 301 113 270 110

kaidah matematika dalam operasi himpunan